Find the average value of the function on the given interval.

1) $f(x)=x^{2}, \quad[-1,1]$
2) $g(x)=x^{2} \sqrt{1+x^{3}}, \quad[0,2]$
3) $f(t)=t e^{-t^{2}}, \quad[0,5]$
4) $h(x)=\cos ^{4} x \sin x, \quad[0, \pi]$

Find the average value of $f$ on the given interval. Find $c$ such that $f_{\text {ave }}=f(c)$. Sketch the graph $f$ and a rectangle whose area is the same as the area under the graph of $f$. You may need to use a graphing calculator.
5) $f(x)=(x-3)^{2}, \quad[2,5]$

6) $f(x)=2 \sin x-\sin 2 x, \quad[0, \pi]$

7) If $f$ is continuous and $\int_{1}^{3} f(x) d x=8$, show that $f$ takes on the value 4 at least once on the interval $[1,3]$.
8) Find $b$ such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .
9) In a certain city the temperature (in $\left.{ }^{\circ} \mathrm{F}\right) t$ hours after 9 A.M was modeled by the function:

$$
T(t)=50+14 \sin \frac{\pi}{12} t
$$

Find the average temperature during the period from 9 A.M. to 9 P.M.
10) The linear density in a rod 8 m long is $\frac{12}{\sqrt{x+1}} \mathrm{~kg} / \mathrm{m}$, where $x$, is measured in meters from one end of the rod. Find the average density of the rod.
11) The velocity $v$ of blood that flows in a blood vessel with radius $R$ and length $l$ at a distance $r$ from the central axis is:

$$
v(r)=\frac{P}{4 \eta l}\left(R^{2}-r^{2}\right)
$$

where $P$ is the pressure difference between the ends of the vessel and $\eta$ is the viscosity of the blood. Find the average velocity (with respect to $r$ ) over the interval $0 \leq r \leq R$. Compare the average velocity with the maximum velocity.

